- Arts & Culture 4971
- Books in Foreign Languages 205
- Business & Economics 4686
- Computers 2361
- Dictionaries & Encyclopedias 672
- Education & Science 82308
- Abstracts 1263
- Astrology 13
- Astronomy 13
- Biology 39
- Chemistry 3835
- Coursework 3731
- Culture 32
- Diplomas 2596
- Drawings 1697
- Ecology 31
- Economy 329
- English 1253
- Entomology 2
- Ethics, Aesthetics 29
- For Education Students 23168
- Foreign Languages 122
- Geography 20
- Geology 17
- History 231
- Maps & Atlases 41
- Mathematics 6324
- Musical Literature 5
- Pedagogics 229
- Philosophy 190
- Physics 13085
- Political Science 132
- Practical Work 111
- Psychology 492
- Religion 50
- Russian and culture of speech 103
- School Textbooks 69
- Sexology 67
- Sociology 53
- Summaries, Cribs 763
- Tests 20878
- Textbooks for Colleges and Universities 546
- Theses 189
- To Help Graduate Students 24
- To Help the Entrant 112
- Vetting 357
- Works 58
- Информатика 9

- Engineering 3241
- Esoteric 1136
- Fiction 3200
- For Children 426
- House, Family & Entertainment 2643
- Law 2887
- Medicine 1240
- Newspapers & Magazines 337
- Security 315
- Sport, Tourism 988
- Website Promotion 694

# Math test with answers Part 2

Refunds: 1

Uploaded:

**13.11.2012**

Content: 21113193720763.rar (319,86 kB)

# Description

Math test, the number of jobs - 90.

Task 1

Question 1. What is called a function?

number;

a rule by which each value of argument x corresponds to one and only one value of y;

vector;

matrix;

there is no right answer.

Question 2. How is it possible to determine the inverse function?

where each element has a unique inverse image;

When the function is constant;

when the function is not defined;

When the function is multi-valued;

there is no right answer.

Question 3. What function is called Limited?

reverse;

the function f (x) is bounded, if mf (x) M;

complex;

the function f (x) is called bounded if f (x)> 0;

the function f (x) is called bounded if f (x) 0;

Question 4: What is the point is called a limit point of A?

null;

t.h0 called a limit point of A if every neighborhood of x0 contains a point of A different from x0;

not belonging to the set A;

there is no right answer;

lying on the boundary of the set.

Item 5. Can be a limit at the point when one-sided limits not equal?

Yes;

sometimes;

No;

always;

there is no right answer.

Task 2

Question 1. Is the function of infinitesimal when?

Yes;

No;

sometimes;

always;

there is no right answer.

Question 2. Is the function is infinitely large at?

Yes;

No;

sometimes;

if x = 0;

there is no right answer.

Question 3. Is the function y = sin x infinitely large when?

Yes;

No;

sometimes;

always;

there is no right answer.

Question 4. Is the function y = cos x infinitely large when?

Yes;

No;

sometimes;

always;

there is no right answer.

Question 5. Is the function y = tg x infinite in Vol. X0 = 0?

Yes;

sometimes;

always;

No;

there is no right answer.

Activity 3

Question 1. Is the product of an infinitesimal function on a limited function, infinitesimal function?

No;

Yes;

sometimes;

not always;

there is no right answer.

Question 2: When is infinitesimal (x) and (x) are called infinitesimal of the same order at x0?

if they are equal;

if;

if;

if the limits are 0;

there is no right answer.

Question 3. How many kinds of basic elementary functions we learned?

5;

1;

0;

2;

3.

Question 4: What is the limit of the constants?

0;

e;

1;

;

p.

Question 5. Is the power function continuous?

No;

Yes;

sometimes;

for x> 1;

there is no right answer.

Task 4

Question 1. Give the formula of the first remarkable limit.

;

uґ = kx + B;

there is no right answer.

Question 2. Give the formula of the second remarkable limit.

0;

Question 3: What functions are called continuous?

infinitesimal;

satisfying the following conditions: a) f is definable in t. in x0) exists and is equal to f (x0);

infinitely large;

degree;

trigonometric.

Question 4. If f (x0 + 0) = f (x0-0) = L, but f (x0) L, which is a function of the gap?

there is no right answer;

2nd kind;

Disposable;

ineradicable;

the function is continuous.

Question 5. What is the gap f (x) in t. X0 if f (x0-0) f (x0 + 0), and it is not known: Of course these limits?

Disposable;

ineradicable;

the function is continuous;

1st kind;

2nd kind.

Task 5

Question 1. Formulate the continuity of complex functions.

always difficult function is continuous;

If the function u = g (x) is continuous at x0 and the function y = f (u) is continuous at u = g (x0), then the composite function y = f (g (x)) is continuous at x0.

complex function is a composite of continuous functions is not continuous;

complex function is discontinuous;

It is a complex function

# Additional information

Question 3. What is the derivative of the function?

The limit values \u200b\u200bof this function;

0;

1;

e

Question 4. What function is differentiable at x = 4?

ln (x-4);

having a derivative at x = 4;

is continuous at x = 4;

there is no right answer

Question 5. What function is called differentiable on (a, b)?

discontinuous at each interval;

differentiable at each point of the interval;

constant;

increasing;

decreasing.

Task 6

Question 1. What is the derivative of y = a constant?

1;

0;

e;

;

there is no right answer.

Question 2. What is the derivative of the function y = x5?

0;

1;

e;

5x4;

there is no right answer.

Question 3. What is the derivative of y = ex?

0;

ex;

e;

1;

there is no right answer.

Question 4: What is the derivative of y = ln x?

;

0;

e;

1;

there is no right answer.

Question 5. What is the derivative of y = sin x?

0;

cos x;

e;

1;

there is no right answer.

Task 7

Question 1. Can a continuous function be differentiable?

No;

Yes;

only at x =;

only at x = 0;

there is no right answer.

Question 2: Is it always a continuous function is differentiable?

always;

never;

not always;

at x = 0;

in Vol. x =.

Question 3: Can a differentiable function to be continuous?

No;

Yes;

never;

in Vol. x = 0;

in Vol. x =.

Question 4. Is it always a differentiable function is continuous?

not always;

never;

there is no right answer;

in Vol. x = 0;

always.

Question 5. Find the second derivative of the function y = sin x.

cos x;

-sin x;

0;

1;

tg x.

Task 8

Question 1. What is the main linear part of the increment function?

derivative;

Differential (DN);

function;

infinitesimal;

infinitely large.

Question 2. State the L'Hospital's rule.

If the right-hand side there is a limit;

;

;

there is no right answer;

Question 3: Which types of uncertainties can be opened using L'Hospital's rule?

{0};

;

cx 0;

cx;

x.

Question 4. Is the condition y = 0 at the point, which is not a boundary point of the domain of a differentiable function at the necessary condition for the existence of extremum at this point?

No;

Yes;

not always;

sometimes;

there is no right answer.

Question 5. Is the condition y = 0 m. X = a sufficient condition for the existence of extrema?

Yes;

No;

not always;

sometimes;

there is no right answer.

Task 9

Question 1. What function is called a function of two variables?

f (x);

n = f (x, y, z);

there is no right answer;

z = f (x, y);

f (x) = const = c.

Question 2. Calculate the limit of the function.

0;

29;

1;

5;

2.

Question 3: Calculate the limit of

0;

1;

16;

18;

20.

Q4: Which lines are called lines of discontinuity?

straight;

consisting of break points;

parabola;

ellipses;

there is no right answer.

Question 5. Find the first derivative of the function at z = 3x + 2y.

1;

2;

0;

5;

there is no right answer.

Task 10

Question 1. What is the function whose derivative is the given function?

Question 2. Locate the erroneous expression if - one of the primitives for a function, and C - arbitrary constant.

etc.

IF YOU DO NOT SOMETHING liked the work, the report indicates E-MAIL, we will contact you and analyze all of your claim during the day.

If you like the work, please leave feedback, this will help you to increase the product list of inexpensive but high-quality work.

Works in * .rar opens archiver download any free and open.