Agriculture and Deforestation in Tropical Asia (translation

Pay with:
i agree with "Terms for Customers"
Sold: 0
Refunds: 0

Uploaded: 15.06.2014
Content: 40615153851007.rar (19,39 kB)

Description

Agriculture and Deforestation in Tropical Asia: an Analytical Framework
Almost every tropical Asian country has lost significant amounts of forest in recent decades. In many countries, particularly in South-East Asia, this occurred in a context of major demographic and economic change. The population grew and became increasingly urbanized. The economies expanded rapidly. Manufacturing industries became more important and the share of agriculture fell. Agricultural productivity improved substantially. These wider changes conditioned the deforestation process. This chapter examines the interactions between productivity-enhancing technological change in agricultural sectors and deforestation in this broad economy-wide context.
Population growth and rising food demand led to considerable forest clearing in many parts of Asia, largely to plant upland food crops (coarse grains, rice, maize, vegetables) and to establish plantations of crops such as tea, rubber and oil-palm. For example, the area under rubber cultivation in Indonesia, Malaysia and Thailand expanded from 260,000 ha in 1910 to almost 7,000,000 ha in 1990 - mostly at the expense of forests (Barlow et al., 1994). In Malaysia and Indonesia, state-sponsored settlement schemes were instrumental in clearing large areas of forests for plantation crops grown by smallholders and large estates. Commercial logging also facilitated the conversion of forests to agriculture, particularly where using land for agriculture conferred property rights over it (Repetto and Gillis, 1988; Deacon, 1994; Cropper et al., 1999).
Rice, Asia's main staple, is grown most widely in wet lowlands. Converting forests to such wet rice systems is typically expensive and not always feasible. Nevertheless, in some places large state-initiated irrigation-cornsettlement projects have converted forests into wet rice (paddy) land. In Sri Lanka, for example, such projects expanded rice cultivation by almost 250,000 ha between 1956 and 1988 and contributed to substantial forest loss (Natural Resources, Energy and Science Authority of Sri Lanka, 1991).
All of the previously mentioned developments occurred in widely differing policy contexts and institutional settings and involved a wide range of actors. Given this great diversity of situations and the many factors that influence deforestation in complex and often location-specific ways, any sweeping generalization is bound to be misleading. This chapter addresses only one narrow aspect of the issue, the links between technological change in agriculture and deforestation, and abstracts this aspect from the multitude of other factors that affect forest learning. It uses a simple trade-theoretic framework to analyse those links under various scenarios designed to reflect some of the main deforestation-relevant situations observed in tropical Asia. Its approach is 'macro', rather than 'micro'. Thus, for example, it generally disregards the complications introduced by the intricacies of decision-making in semi-subsistence farm households. Throughout, its emphasis is on highlighting the main linkages and mechanisms that tie developments in other sectors to forestry, rather than on formal rigour.
The chapter focuses on economic agents' responses to incentives stemming from market forces. Admittedly, this approach has strong limitations since non-market factors, including government policies, influence and at times drastically modify incentive structures. Non-market factors are also important in places where farmers who are only partially integrated into markets practicese semi-subsistence farming. Nevertheless, this kind of analytical approach still has considerable value and relevance. Market factors dominate large areas of the economy and economic considerations temper government decisions, even if they do not entirely determine them .....

Additional information

Section 4 examines the impact of technological changes in lowland agriculture, such as the Green Revolution. Here we examine not only the implications of different assumptions about output markets and property rights but also the income effects generated by technological change and the impact of technologies biased towards the use of capital.
By varying our assumptions regarding the structure of the economy, how output and factor markets behave and how the forest and agricultural sectors interact, we can obtain important insights about several of the most commonly observed situations involving deforestation in tropical Asia. These include situations where forests compete with internationally traded agricultural commodities, such as oil-palm, rice and rubber, as well as situations where they compete with subsistence crops (eg coarse grains) or products orientated to domestic markets (eg cool-climate vegetables) . There are also important differences between upland agriculture, which directly competes with forests, and lowland agriculture, which for the most part does not. Distinguishing between these two types of agriculture provides richer, and sometimes distinct, insights than those gained from models that treat agriculture as a single undifferentiated sector. Table 17.1 summarizes the different scenarios covered in the chapter and their respective outcomes.
The chapter does not attempt to provide a rigorous welfare evaluation of the outcomes it analyses. How different outcomes affect welfare is not always clear. There are many equity considerations and forests provide important externalities whose welfare benefits are difficult to measure.

Feedback

0
No feedback yet.
Period
1 month 3 months 12 months
0 0 0
0 0 0
In order to counter copyright infringement and property rights, we ask you to immediately inform us at support@plati.com the fact of such violations and to provide us with reliable information confirming your copyrights or rights of ownership. Email must contain your contact information (name, phone number, etc.)