Каталог
Электронные книги22229

тест математика ч.4 МЭИ 14 заданий по 5 вопросов

Оплатить с помощью:
с "Правилами покупки товаров" ознакомлен и согласен
Продаж: 5
Возвратов: 0

Загружен: 10.01.2014
Содержимое: 40110131832267.rar (124,47 Кбайт)

Описание товара

Задание 1
Вопрос 1. Каким событием согласно терминологии теории вероятностей является попадание в мишень при вы-стреле в тире?
1.Достоверным событием.
2.Возможным событием.
3.Событием совместимым с событием А, если событие А состоит в непопадании в мишень.
4.Событием противоположным событию А, если событие А состоит в попадании в мишень.
5.Неслучайным событием.
Вопрос 2. Предположим, что событие А при проведении k испытаний имело место s раз. Какова абсолютная частота появления события А?
1. .
2. .
3. .
4.s.
5. .
Вопрос 3. При шести бросаниях игральной кости (кубика с цифрами от 1 до 6 на гранях) цифра 5 выпала 2 раза, цифра 4 выпала 2 раза, а цифры 3 и 2 выпали по 1 разу каждая. Какова по результатам этого наблюдения частость (относительная частота) события, состоящего в выпадании цифры 3 или цифры 4?
1. .
2. .
3. .
4. .
5. .
Вопрос 4. Каково статистическое определение вероятности?
1.Вероятностью события А называется отношение числа исходов, благоприятствующих событию А, к общему числу испытаний в серии наблюдений.
2.Вероятностью называют устойчивую частоту появления события.
3.Вероятностью называют постоянную величину, около которой группируются наблюдаемые значения частости.
4.Вероятностью называют среднее арифметическое частости появления события при проведении серии одина-ковых испытаний.
5.Вероятностью называют отношение числа благоприятствующих исходов к числу всех равновозможных исхо-дов.
Вопрос 5. Какое событие является достоверным?
1.Событие, которому благоприятствуют более половины из единственно возможных исходов испытания.
2.Выпадание положительного числа при бросании игральной кости.
3.Извлечение вслепую белого шара из урны, в которой находятся одинаковые, за исключением цвета, белые и черные шары.
4.Падение бутерброда маслом вверх.
5.Выпадание разных цифр при двух бросаниях игральной кости.
Задание 2
Вопрос 1. В каком случае система событий называется полной?
1.Если сумма вероятностей этих событий равна единице.
2.Если события несовместимы и равновозможны.
3.Если произведение вероятностей этих событий равно единице.
4.Если события являются несовместимыми и единственно возможными.
5.Если сумма вероятностей этих событий превышает единицу, а сами события являются совместимы.
Вопрос 2. Допустим, что при некотором испытании возможны события А и В, вероятность события А , вероятность несовместимого с А события B . Какое из приведенных ниже высказываний не всегда будет истиной?
1.Событие А является противоположным событию В.
2.Событие В является противоположным событию А.
3.Если события А и В являются единственно возможными, то система событий А, В является полной.
4.События А и В – равновозможные.
5.Событие, которому благоприятствуют А и В, является достоверным.
...
Задание 14
Вопрос 1. Рассмотрим выборку 9, 7, 7, 7, 1, 2, 8, 3. В какой строке записан ранг числа 7 в этой выборке?
1.3.
2.4.
3. .
4.5
5.6.
Вопрос 2. Рассмотрим две независимые выборки , и ранги совокупности наблюдений . Что такое статистика Уилкоксона?
1. .
2. .
3.
4.
5.Сумма рангов одной из выборок.
Вопрос 3. Рассмотрим две независимые выборки по 6 элементов в каждой. Каково математическое ожидание ста-тистики Уилкоксона при выполнении гипотезы об однородности выборок?
1.39.
2.38.
3.37.
4.35.
5.43.
Вопрос 4. Которое из утверждений справедливо при отсутствии эффекта обработки для повторных парных наблюдений случайных величин X и Y независимо от их распределения?
1. для всех .
2. для всех .
3. для всех .
4. для всех .
5. .
Вопрос 5. Какое условие необходимо для применения критерия знаковых ранговых сумм Уилкоксона?
1. для всех .
2.Случайные величины , где , непрерывны и одинаково распределены.
3.Случайные величины , где , дискретны.
4.Случайные величины , где , имеют разные распределения.
5.Выполнение гипотезы о нулевом эффекте обработки.

Отзывы

0
Отзывов от покупателей не поступало.
За последние
1 мес 3 мес 12 мес
0 0 0
0 0 0
В целях противодействия нарушению авторских прав и права собственности, а также исключения необоснованных обвинений в адрес администрации сайта о пособничестве такому нарушению, администрация торговой площадки Plati (http://www.plati.market) обращается к Вам с просьбой - в случае обнаружения нарушений на торговой площадке Plati, незамедлительно информировать нас по адресу support@plati.market о факте такого нарушения и предоставить нам достоверную информацию, подтверждающую Ваши авторские права или права собственности. В письме обязательно укажите ваши контактные реквизиты (Ф.И.О., телефон).

В целях исключения необоснованных и заведомо ложных сообщений о фактах нарушения указанных прав, администрация будет отказывать в предоставлении услуг на торговой площадке Plati, только после получения от Вас письменных заявлений о нарушении с приложением копий документов, подтверждающих ваши авторские права или права собственности, по адресу: 123007, г. Москва, Малый Калужский пер. д.4, стр.3, Адвокатский кабинет «АКАР №380».

В целях оперативного реагирования на нарушения Ваших прав и необходимости блокировки действий недобросовестных продавцов, Plati просит Вас направить заверенную телеграмму, которая будет являться основанием для блокировки действий продавца, указанная телеграмма должна содержать указание: вида нарушенных прав, подтверждения ваших прав и ваши контактные данные (организиционно-правовую форму лица, Ф.И.О.). Блокировка будет снята по истечение 15 дней, в случае непредставления Вами в Адвокатский кабинет письменных документов подтверждающих ваши авторские права или права собственности.